
SOC 403 Data Workshop
Web Searches and Analysis in R

Brandon Morande
University of Washington

February 4, 2025

I. Introduction

Our class will develop tools to collect data on conditions that might affect social disorder on public transit.
Web searches and Census data occasionally offer less expensive and intensive options than direct observation.
In this workshop, we’ll learn to gather online data and conduct descriptive analyses. This will include
building and subsetting spatial datasets, as well as creating visuals in R (e.g., tables, maps).
You can find the R Markdown (.rmd) file and associated R script to create this document on Canvas.

II. Web Searches

Data may already exist for our proposed indicators. For example, the City of Seattle maintains a file with
the names and boundaries of public parks. We recommend exploring the following city and county sites:

• Seattle Open Data
• Seattle GeoData
• King County Open Data
• King County Resource Database (KCRD)

These sites might provide data with geographic information (e.g., coordinates). If so, we can download the
files and use R to subset locations within 0.25 miles of our stations. However, some pages may only display
interactive maps. In these cases, we need to manually collect information.
We should gather enough data to (1) link the indicator to a station, (2) categorize it for analysis, (3) map its
location, and (4) prevent duplicate entries. We’ll use this Google Sheet to document the following details:

• Station Name (e.g., CID)
• Type (e.g., Social Service)
• Feature (e.g, Shelter)
• Name (e.g., Salvation Army)
• Address (e.g., 811 Maynard Ave S, Seattle, WA, 98134)
• Latitude (e.g., 47.59531)
• Longitude (e.g., -122.32541)

However, data may not exist for some of our variables - such as entertainment venues. We’ll need to use
search engines and mapping platforms to identify nearby sites. Unfortunately, Google Maps does not allow
us to set a search radius. If you’re unsure whether a feature lies within 0.25 miles, we can still collect the
data and confirm the distance in R later. However, you could try third-party tools like Map Developers or
ArcGIS Online to draw circles or distance lines.

1

https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::park-boundary-outline/about
https://data.seattle.gov/
%5Bhttps://data-seattlecitygis.opendata.arcgis.com/%5D
https://gis-kingcounty.opendata.arcgis.com/
https://find-human-services.kingcounty.gov/
https://docs.google.com/spreadsheets/d/1IE78sp4fJrfRb63Mhp457RpS88VTpqTWJWZtZ_Y-2Sw/edit?usp=sharing
https://mapdevelopers.com/draw-circle-tool.php
https://uw.maps.arcgis.com

III. R for Managing and Analyzing Data

R is a free, open-source programming language that many scientists use for data analysis and visualization.
RStudio offers a user-friendly interface to write and execute R code, as well as view output (e.g., plots). You
can install the applications here:

• R-4.4.2 for Windows
• R-4.4.2 for macOS
• RStudio from Posit

Here are some resources for those interested in improving their skills:

• Introductory:
– Hands-On Programming with R (Grolemund 2014)
– R cheat sheets

• Intermediate:
– R for Data Science (Grolemund and Wickham 2023)
– Data Visualization: A Practical Introduction (Healy 2018)
– Graphical Data Analysis with R (Unwin 2015)

• Advanced:
– Advanced R (Wickham 2019)

R also offers extensive spatial capabilities, including for US Census data. You can find more texts here:

• Spatial Data Science: With Applications in R (Pebesma & Bivand 2025)
• Geocomputation with R (Lovelace et al. 2025)
• Analyzing US Census Data (Walker 2023)

i. Opening RStudio and Starting Script

After opening RStudio, we can click the “File” tab and select “New File,” then “R Script.” Save the script
to a preferred folder. Next, open the “Session” tab and choose “Set Working Directory” to “Source File
Location.” This tells R that we’re working from the folder where we saved our script.

We then install any needed packages, which are collections of code, data, and documentation that others
create to simplify programming. Paste the following text into the R script, then highlight lines or place the
cursor on a line and press “Command + Enter” to run the code.

install.packages("readr") # To read in datasets
install.packages("tidyverse") # To clean, subset, and transform data
install.packages("tidycensus") # To query US Census data
install.packages("tigris") # To load Census geographies
install.packages("ggplot2") # To create graphics
install.packages("ggthemes") # To add extra customization for graphics
install.packages("ggspatial") # For different map backgrounds
install.packages("prettymapr") # For different map backgrounds
install.packages("kableExtra") # To format nice tables
install.packages("webshot2") # For saving kable tables
install.packages("sf") # For spatial data and analysis
install.packages("units") # For converting units

2

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx/
https://posit.co/download/rstudio-desktop/#download
https://rstudio-education.github.io/hopr/
https://posit.co/resources/cheatsheets/
https://r4ds.hadley.nz/
https://socviz.co/
http://www.gradaanwr.net/
http://adv-r.had.co.nz/
https://r-spatial.org/book/
https://geocompr.robinlovelace.net/index.html
https://walker-data.com/census-r/index.html

You only need to install packages once (and update them occasionally). However, you need to load them
into RStudio every time:

Load packages
library(readr)
library(tidyverse)
library(tidycensus)
library(tigris)
library(ggplot2)
library(ggspatial)
library(prettymapr)
library(ggthemes)
library(kableExtra)
library(webshot2)
library(sf)
library(units)

To use tigris to get Census geographies
options(tigris_use_cache = TRUE)

ii. Loading and Cleaning Data

Next, we need to upload our data. Non-spatial and point data often come in .xlsx and .csv formats. For
example, we can download data on park restrooms from Seattle GeoData as a .csv, read it into RStudio
with read_csv(), and save it as a new dataframe (df) called “restrooms.”

Load data from the 'data' folder within working your directory
restrooms <- read_csv("data/restrooms.csv")

We can use the head() function to view the beginning of the df. You can see the complete df using View()
or by clicking it in the “Environment” pane.

View first lines of df
head(restrooms)
A tibble: 6 x 37
OBJECTID `Park Name` `Facility Name` `Description (AMWO)` `PMA ID (AMWO)`
<dbl> <chr> <chr> <chr> <chr>
1 6315 Washington Park~ Washington Par~ ARBORETUM COMPOSTIN~ 393
2 6316 Bar-S Playground Bar S Playgrou~ BAR S PLAYGROUND SH~ 3703
3 6317 Jefferson Park ~ Jefferson <NA> <NA>
4 6318 <NA> SEWARD PARK FI~ SEWARD PARK FISH HA~ 428
5 6319 Volunteer Park VOLUNTEER PARK~ VOLUNTEER PARK TRAN~ 399
6 6320 West Seattle Go~ WEST SEATTLE G~ WEST SEATTLE GOLF R~ 469
i 32 more variables: `Location ID (AMWO)` <dbl>, `AMWO ID` <chr>,
`Life Cycle Status` <lgl>, `Life Cycle Status Code (AMWO)` <chr>,
`Open to Public (AMWO)` <chr>, `Year Constructed (AMWO)` <dbl>,
`Season (AMWO)` <chr>, `Current Status (AMWO)` <chr>,
`Reason Closed (AMWO)` <chr>, `Season Closure Date (AMWO)` <chr>,
`Usage (AMWO)` <chr>, `Sani-Can Onsite (AMWO)` <chr>,
`Hours Open (AMWO)` <chr>, `Locked By (AMWO)` <chr>, POINT_X <dbl>, ...

3

https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::park-restrooms/about

This df has 151 observations (rows) and 37 variables (columns). Use select() from the dplyr package to
only retain needed columns. If a variable has a space in its name, we need to add backticks or quotation
marks. The concatenate function c() allows us to list more than item.

Keep needed columns
restrooms <- restrooms |>

select(c(OBJECTID, `Park Name`, `Facility Name`, `Open to Public (AMWO)`, `Season (AMWO)`,
`Hours Open (AMWO)`, `Latitude (AMWO)`, `Longitude (AMWO)`))

Not all park restrooms appear open to the public. To only keep the publicly-accessible locations, we can
filter() “Yes” rows under the “Open to Public” column.

Filter to only include public restrooms
restrooms <- restrooms |>

filter(`Open to Public (AMWO)` == "YES") # Use two equal signs for specifying a value

iii. Transforming Data into a Spatial Object

Linking restrooms to stations requires us to convert the dataset into a “simple features” (sf)‘ object that
recognizes spatial information. However, we first need to check if any observations lack coordinates.

See if there is missing (NA) data by column
colSums(is.na(restrooms))
OBJECTID Park Name Facility Name
0 23 1
Open to Public (AMWO) Season (AMWO) Hours Open (AMWO)
0 0 1
Latitude (AMWO) Longitude (AMWO)
0 0

Remove observations with missing coordinate data
restrooms <- restrooms |>

filter(!is.na(`Latitude (AMWO)`), # Remove rows where Latitude is NA
!is.na(`Longitude (AMWO)`))

After removing missing data, we can create a spatial df with st_as_sf(). We provide the “coords” argument
with the variable names for longitude and latitude. This function creates a new column called “geometry.”

Convert new spatial object called "restrooms_sf"
restrooms_sf <- st_as_sf(restrooms,

coords = c("Longitude (AMWO)", "Latitude (AMWO)"),
crs = 4269, # Common CRS for lat/lon in North America
remove = FALSE) # Setting remove to FALSE keeps the lon/lat columns

We should keep the Coordinate Reference System (CRS) consistent across our datasets. A CRS defines the
coordinate system (e.g., degrees, meters) and projection used to represent locations on Earth’s curved surface
in two dimensions. We can use the NAD83 Washington North metric projection for Seattle, with an ESPG
code of 6596.

4

To check CRS st_crs(restrooms_sf)

If incorrect, transform to appropriate projection
restrooms_sf <- st_transform(restrooms_sf, crs = 6596)

iv. Linking Point Data to Stations

Now we’re ready to match restrooms to nearby stations. Seattle GeoData provides a dataset with all the
Light Rail station locations here. We can download the dataset as a GeoPackage (.gpkg) or Shapefile (.shp)
to preserve the spatial features.

GeoPackages may have multiple layers of data. We can check the list of layers with st_layers() and then
read in the ones we want. Always remember to check and transform the CRS if needed. The geometry
column for this df is called “SHAPE.”

Check list of layers in gpkg
st_layers("data/light_rail_stations.gpkg")
Driver: GPKG
Available layers:
layer_name geometry_type features fields
1 Light_Rail_Stations Point 58 13
crs_name
1 NAD83(HARN) / Washington North (ftUS)

Read in the file
stations <- read_sf("data/light_rail_stations.gpkg", layer = "Light_Rail_Stations")

Check CRS st_crs(light_rail_stations) # EPSG:2926, NAD83(HARN) State Plane
Washington North (ftUS) is also common for Seattle

Transform CRS
stations <- st_transform(stations, crs = 6596)

Again, we should clean the df to only keep necessary columns. Let’s also focus on Capitol Hill, Westlake,
and CID stations.

Keep project stations and needed columns
stations <- stations |>

filter(STATION %in% c("Capitol Hill", # Use %in% for multiple values
"Westlake",
"International District / Chinatown")

)|>
select(c(STATION,

SHAPE))

Using st_buffer(), we can create a 0.25 mile radius around each station (in meters for our CRS). Notice
how the “SHAPE” column now contains polygons instead of points.

Specify buffer distance
distance <- 0.25 * 1609.34 # 0.25 miles in meters

5

https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::light-rail-stations-1/about

Create radius polygons
stations_buffer <- st_buffer(stations, dist = distance)

We can then match restrooms to light rail station buffers using st_join(). We specify the “join” argument
as st_intersects because we want to match any park whose point falls within or on the edge of a station
radius. Here’s a cheatsheet for the different st_() functions.

Match restrooms to stations buffer (for later tables)
stations_restrooms <- stations_buffer |>

st_join(restrooms_sf, join = st_intersects)

Match stations to restrooms (for later mapping) This keeps restroom
geometries
restrooms_sf <- restrooms_sf |>

st_join(stations_buffer, join = st_intersects)

We can create a table with counts of the restrooms using kable. Kable will print nicely with R Markdown,
then you can crop it from the .pdf or .html file.

Create a df of restroom counts
restrooms_count <- stations_restrooms |>

Group by station
group_by(STATION) |>
Sum up the restroom rows that aren't NA
summarize(Count = sum(!is.na(`Facility Name`))) |>
Remove the geometry column
st_drop_geometry()

Construct table with kable
restrooms_table <- knitr::kable(restrooms_count,

row.names = FALSE, # Remove numbers in front of rows
col.name = c("Station", "Count"), # Name the columns
caption = "Number of Public Restrooms Within .25 miles")

Print table
restrooms_table

Table 1: Number of Public Restrooms Within .25 miles

Station Count
Capitol Hill 1
International District / Chinatown 0
Westlake 0

v. Linking Polygon Data to Stations

We can follow a similar process for polygon data, such as public parks.

6

https://osf.io/an6b5/download
https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::park-boundary-outline/about

Check list of layers in gpkg
st_layers("data/parks.gpkg")
Driver: GPKG
Available layers:
layer_name geometry_type features fields
1 Parks_Boundary__outline_ Multi Polygon 513 5
crs_name
1 NAD83(HARN) / Washington North (ftUS)

Read in the file
parks <- read_sf("data/parks.gpkg", layer = "Parks_Boundary__outline_")

Check CRS st_crs(parks) # EPSG:2926

Transform CRS
parks <- st_transform(parks, crs = 6596)

After loading and transforming our spatial data, we can select our needed columns and then match parks to
the “stations_buffer” df.

Select needed park columns
parks <- parks |>

select(c(NAME, SHAPE))

Match parks to stations (for tables)
stations_parks <- stations_buffer |>

st_join(parks, join = st_intersects)

Match stations to parks (for mapping)
parks <- parks |>

st_join(stations_buffer, join = st_intersects)

Now let’s create another table of counts.

Create df of park counts
parks_count <- stations_parks |>

group_by(STATION) |>
summarize(Count = sum(!is.na(NAME))) |>
st_drop_geometry()

Construct table with kable
parks_table <- knitr::kable(parks_count, row.names = FALSE, col.name = c("Station",

"Count"), caption = "Number of Public Parks Within .25 miles")

Print table
parks_table

7

Table 2: Number of Public Parks Within .25 miles

Station Count
Capitol Hill 3
International District / Chinatown 5
Westlake 3

IV. R for US Census Data

We can also analyze neighborhood demographic characteristics in R. For our class, we’ll apply data from
the 2020 decennial Census at the block level - the smallest geographic unit available. The US Census
Bureau also provides yearly population estimates via the American Community Survey, but only for larger
areas. The public can manually download datasets from data.census.gov or the National Historic Geographic
Information System (NHGIS). However, the tidycensus package allows us to request data directly in R. If
the following code doesn’t work, you may need to obtain an Application Programming Interface (API) key
- just fill in your organization (University of Washington) and school email here.

Then set and save your API key for future R sessions.

Set and save Census API key census_api_key('your_api_key_here', install =
TRUE, overwrite = TRUE)

Next, we can pull 2020 total population data (“P1_001N”) for King County blocks using get_decennial().
You can find other variable codes here. Replacing the variables argument with table allows you to
download every variable for that category.

Request decennial population data
block_pop <- get_decennial(geography = "block",

state = "WA",
county = "King",
year = 2020,
geometry = TRUE, # To get block geometry
#table = "P1", # To download all household/demographic data
variables = "P1_001N"
)

Transform crs
block_pop <- st_transform(block_pop, crs = 6596)

We want to know both population size and density, so let’s calculate the area of blocks. The mutate()
function creates or edits column values, while set_units() allows us to change from meters2 to miles2.

Calculate area
block_pop <- block_pop |>

mutate(area_sqmile = set_units(st_area(geometry), "mileˆ2"))

Now we match blocks that fall within 0.25 miles of stations. For simplicity, let’s count all polygons that
intersect with a buffer zone.

8

data.census.gov
https://www.nhgis.org/
https://api.census.gov/data/key_signup.html
https://api.census.gov/data/2020/dec/pl/variables.html

Match block populations to stations
stations_block_pop <- stations_buffer |>

st_join(block_pop, join = st_intersects)

We can now sum the block populations and areas for each station, then calculate population densities.

Calculate population size and density
stations_total_pop <- stations_block_pop |>

group_by(STATION) |>
Sum the block population and area values by station
summarize(tot_pop = sum(value),

tot_area = sum(area_sqmile)) |>
Create new density column
mutate(pop_dens = tot_pop/tot_area) |>
st_drop_geometry()

Create table
pop_table <- stations_total_pop |>

Drop units from values using as.numeric
mutate(tot_area = round(as.numeric(tot_area), 2), # Round to two places

pop_dens = round(as.numeric(pop_dens))) |> # Remove decimals
knitr::kable(

row.names = FALSE,
col.name = c("Station", "Size", "Area (sq mile)", "Density"),
caption = "Surrounding Population Size and Density")

Print table
pop_table

Table 3: Surrounding Population Size and Density

Station Size Area (sq mile) Density
Capitol Hill 9714 0.26 36706
International District / Chinatown 5927 0.32 18674
Westlake 7610 0.26 29457

V. Creating Maps

R supports numerous packages for creating maps, including base plot, ggplot2, tmap, and leaflet. We’ll
use ggplot2 given its accessibility, flexibility, and popularity for creating graphics.

Let’s plot a map of the Capitol Hill station with it’s buffer zone. Here, the annotation_map_tile() function
supplies Open Street Maps (OSM) as the map background.

Map of Capitol Hill
(capitol_hill_map <- ggplot() +

Add OSM background
annotation_map_tile(type = "osm",

zoom = 16) + # Can change zoom of the map

9

Add station buffer zone
geom_sf(data = subset(stations_buffer, STATION == "Capitol Hill"),

aes(geometry = SHAPE),
color = "darkred", # Color the boundary
linewidth = 0.5, # Set width of line
fill = "red", # Color in circle
alpha = 0.1) + # Make circle transparent to see map background

Add station point
geom_sf(data = subset(stations, STATION == "Capitol Hill"),

aes(geometry = SHAPE),
color = "blue",
size = 4) + # Change size of point

Add a title
labs(title = "Capitol Hill Station") +
Remove axes
theme(

axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank()
)

)

Capitol Hill Station

Then we add nearby parks and restrooms.

10

Add parks and restrooms to map
(capitol_hill_map <-

Start with existing map
capitol_hill_map +
Add items
geom_sf(data = subset(parks, STATION == "Capitol Hill"),

aes(geometry = SHAPE,
color = "Park"), # Add parks to color legend

fill = "green4", # Fill polygon
alpha = 0.5) +

geom_sf(data = subset(restrooms_sf, STATION == "Capitol Hill"),
aes(geometry = geometry,

color = "Restroom"), # Add restrooms to color legend
size = 4, shape = 18) +

Add a legend and specify colors
scale_color_manual(name = NULL, # Remove legend title

values = c("Park" = "green4",
"Restroom" = "darkgreen")) +

Customize the legend
guides(color = guide_legend(override.aes = list(size = 4, # Increase size of points

fill = "green4"))) # Fill polygon
)

Park

Restroom

Capitol Hill Station

We can save our maps and other plots using ggsave().

11

Save map, specifying file path, dimensions, and resolution
ggsave(plot = capitol_hill_map, "figures/capitol_hill_map.pdf", width = 6, height = 6,

dpi = 300)

However, what if we want a simple background that does not contain lots of elements? We could map Census
block boundaries instead. We can download geographies directly to R with the blocks() function from the
tigris package. You could also manually read in data.

Download census block geography
block_geo <- blocks(state = "WA", county = "King", year = 2020, class = "sf")

Now let’s recreate the Capitol Hill map with a new background.

Map of Capitol Hill
(capitol_hill_map_simple <- ggplot() +

Add Census boundaries
geom_sf(data = block_geo, aes(geometry = geometry)) +
Add station buffer zone
geom_sf(data = subset(stations_buffer, STATION == "Capitol Hill"),

aes(geometry = SHAPE), color = "darkred", linewidth = 0.5,
fill = "red", alpha = 0.1) +

Add station point
geom_sf(data = subset(stations, STATION == "Capitol Hill"),

aes(geometry = SHAPE, color = "Station"), size = 4) +
Add parks
geom_sf(data = subset(parks, STATION == "Capitol Hill"),

aes(geometry = SHAPE, color = "Park"),
fill = "green4", alpha = 0.5) +

Add park label
geom_text(data = subset(parks, STATION == "Capitol Hill"),

aes(x = st_coordinates(st_centroid(SHAPE))[, 1], # Extract x-coords
y = st_coordinates(st_centroid(SHAPE))[, 2], # Extract y-coords
label = NAME),

size = 2) +
Add restrooms
geom_sf(data = subset(restrooms_sf, STATION == "Capitol Hill"),

aes(geometry = geometry, color = "Restroom"),
size = 4, shape = 18) +

Add legend
scale_color_manual(name = NULL,

values = c("Station" = "blue",
"Park" = "green4",
"Restroom" = "darkgreen")) +

Customize legend
guides(color = guide_legend(override.aes = list(size = 4, fill = "green4"))) +
Add a title
labs(title = "Capitol Hill Station") +
Remove axes
theme(

axis.title = element_blank(),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),

12

axis.text.y = element_blank(),
axis.ticks.y = element_blank()
) +

Zoom into Capitol Hill
coord_sf(xlim = c(-122.328, -122.312), ylim = c(47.614, 47.624), expand = FALSE)

)

CAL ANDERSON PARK

SUMMIT SLOPE PARK

THOMAS STREET GARDENS

Park

Restroom

Station

Capitol Hill Station

Save plot
ggsave(plot = capitol_hill_map_simple, "figures/capitol_hill_map.pdf",

width = 6, height = 6, dpi = 300)

We could add other elements to this map, as well as change font type and size. Conveying all the information
we want often requires creativity, so have fun! If you have any questions, please email me (bmorande@uw.edu)
or reference the resources linked in this document.

13

mailto:bmorande@uw.edu

	I. Introduction
	II. Web Searches
	III. R for Managing and Analyzing Data
	i. Opening RStudio and Starting Script
	ii. Loading and Cleaning Data
	iii. Transforming Data into a Spatial Object
	iv. Linking Point Data to Stations
	v. Linking Polygon Data to Stations

	IV. R for US Census Data
	V. Creating Maps

